Chapel Creek Stream Restoration Project Orange County, North Carolina

EEP Project #77 SCO ID# 050645701

Mitigation Plan and As-Built Baseline Report - Final

Data Collected: March 2009 Submitted: August 15, 2009 Revised: October 23, 2009

Prepared for: North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program Parker Lincoln Building 2728 Capital Boulevard, Suite 1H-103 Raleigh, NC 27606

Chapel Creek Stream Restoration EEP Project #77 Chapel Hill, North Carolina Orange County

Mitigation Plan & As-Built Baseline Prepared By:

Ward Consulting Engineers, P.C. Project Manager: Becky Ward, P.E. 8386 Six Forks Road, Suite 101 Raleigh, NC 27615-5088 Ph: 919-870-0526 Fax: 919-870-5359

Vegetation and Soils Investigations Provided by: The Catena Group, Inc. 410-B Millstone Drive Hillsborough, NC 27278 Ph: 919-732-1300 Fax: 919-732-1303

Executive Summary

The North Carolina Ecosystem Enhancement Program (EEP) has completed a stream restoration project along approximately 1,350 linear feet of Chapel Creek, located on University of North Carolina property in Chapel Hill, Orange County, North Carolina. The project is located in the Morgan Creek Local Watershed planning area, within the 14-digit HUC 03030002060080. The drainage area for Chapel Creek is approximately 0.42 square miles at the downstream limit of the project where a drainage channel through the A.E. Finley Golf Course flows into Chapel Creek. The land use in the watershed consists of University of North Carolina facilities, single family residential, elementary schools, roadways, and forested land.

The Morgan Creek LWP noted water quality degradation and impaired biological community in the watershed and identified major watershed stressors as: streambank erosion, excess stormwater runoff, and disturbed riparian buffers. The goals of the restoration project are to improve water quality in Chapel Creek and the Cape Fear river basin by:

- Channel restoration of pattern, profile, and dimension for approximately 960 linear feet of Chapel Creek.
- Channel enhancement/stabilization for approximately 330 feet with a Priority Two restoration approach, bankfull bench and stream bank repairs.
- Restore reach to a stable stream channel, capable of transporting flows and sediment load efficiently.
- Improve aquatic habitat by planting trees along the banks in the cleared section to increase shade and adding more sinuosity to create more pool and riffle sections.
- Reduce sediment inputs to the stream from bank erosion by re-vegetating the banks.

There are two distinct types of channels within the project limits of Chapel Creek. The upper reach, existing of the first 957 feet of stream from Highway 15/501 heading southeast, is in a cleared area that was once used as part of the A.E. Finley Golf Course and was regularly mowed and maintained. The lower reach, existing of the last 350 feet of stream, is in a wooded section where trees and other plants provide more bank stabilization and the floodplain has been less disturbed. The design for the upper reach includes approximately 961 linear feet of stream relocation. The design for the lower reach includes benching areas where the stream is entrenched and sloping the banks where possible to give the stream better access to its floodplain for an approximate length of 330 feet. In addition, the project included restoring the riparian buffer to Piedmont Alluvial Forest native plant community.

Table of Contents

1.0 Project	Background
1.1 Loca	ation and Setting
	ect Goals and Objectives
	ect Structure, Type, and Approach
•	ect History, Contacts, and Attribute Data
	s Criteria
2.1 Mor	phologic Parameters and Channel Stability
2.1.1	Dimension
2.1.2	Pattern and Profile
2.1.3	Substrate
2.1.4	Sediment Transport
2.2 Vege	etation
2.3 Hydr	rology
2.3.1	Streams
3.0 Monito	ring Plan Guidelines
3.1 Hydr	rology
3.1.1	Stream
3.2 Strea	am Channel Stability and Geomorphology
3.2.1	Dimension
3.2.2	Profile and Pattern
3.2.3	Visual Assessment
3.2.4	Bank Stability Assessment
3.2.5	Vegetation
3.2.6	Digital Photos
4.0 Mainter	nance and Contingency Plans
Appendix A	
Vicinit	y Map
	ion Plan View
Tables	
Appendix B	Morphological Summary Data and Plots
Tables	5-6
Longitu	idinal Profile Plot
Cross S	Section Plots
Appendix C	Vegetation Data
Table 7	-
Appendix D	Site Photo Log
Appendix E	As-Built Plan Sheets
	List of Tables
Table 1:	Project Components
Table 2:	Project Activity and Reporting History
Table 3:	Project Contacts Table
Table 4:	Project Attribute Table
Table 5a:	Baseline Stream Data Summary
Table 5b:	Baseline Stream Data Summary (Substrate, Bank, and Hydrologic Parameter
	Distributions)
Table 6:	Dimensional Morphology Summary (Dimensional Parameters – Cross Sections)
Table 7:	Vegetation Plot Attribute Data
Table 8:	Plant Species and Quantities for Zones 1, 2, and 3
Table 9:	Perennial Seed Mix
	List of Figures
Figure 1A	Vicinity Map
Figure 2	Mitigation Plan View

1.0 Project Background

1.1 Location and Setting

The restored reach of Chapel Creek is located on University of North Carolina property in Chapel Hill, Orange County, North Carolina (Figure 1). The project begins approximately 40 feet downstream of the existing culvert under Highway 15/501 (Fordham Boulevard). The existing culvert is located approximately 1,200 feet south of the interchange of Highway 15-501 and Highway 54 (Raleigh Road). The study area for Chapel Creek extends downstream from the culvert approximately 1,350 linear feet to approximately 150 feet downstream of an existing bridge crosses. The stream runs through an abandoned fairway of the A.E. Finley Golf Course.

Chapel Creek is located in the Cape Fear River basin (HUC 03030002) and is a tributary to Morgan Creek, which feeds into the Jordan Lake reservoir water supply source. The project site is also in the Morgan Creek Local Watershed planning area (14-digit HUC 03030002060080).

1.2 Project Goals and Objectives

The goals of the restoration project are to improve water quality in Chapel Creek and the Cape Fear river basin by:

- Channel restoration of pattern, profile, and dimension for 961 linear feet of Chapel Creek.
- Channel enhancement/stabilization for 330 feet with a Priority Two restoration approach, bankfull bench.
- The creation of an additional wetland pocket feature where possible to enhance stream and buffer credits.
- Restore the reach to a stable stream channel, capable of transporting flows and sediment load efficiently.
- Improve aquatic habitat by planting trees along the banks in the cleared section to increase shade and adding more sinuosity to create more pool and riffle sections.
- Reduce sediment inputs to the stream from bank erosion by re-vegetating the banks.

1.3 Project Structure, Type, and Approach

Reach 1 of Chapel Creek was restored with a Priority Level I restoration approach for 961 linear feet within the abandoned fairway. The classification of the restored stream is a C4 stream type. The incised stream was reconnected to its floodplain. The stream pattern, profile, and dimension were adjusted to allow the stream to efficiently transport its water and sediment load through a combination of changes to the channel dimension, pattern, and bedform.

The lower reach of Chapel Creek, Reach 2, was enhanced with bankfull benches on one side of the stream to allow flood flows greater than bankfull to expand onto the floodplain. Stream bank locations along the lower reach that were showing signs of erosion were repaired by creating a stable slope, stabilizing the slope with erosion control

matting, and re-vegetating. The length of the Enhancement II reach is 330 feet. The total project area protected by conservation easement is 5.15 acres. A summary of the project components can be found in Tables 1a and 1b.

Three planting zones were developed for the Chapel Creek Stream Restoration project: Zone 1-Wetland Depression, Zone 2-Riparian Buffer, and Zone 3-Streambanks. Zone 1 was planted with species adapted to wetland hydrology. Zone 2 was planted with vegetation typical of a Piedmont Alluvial Forest. Zone 3 was planted with small trees and shrubs typical for a streamside community. A total of 3473 woody stems were planted within the construction limits composed of a total of 23 species. A temporary and perennial seed mix composed of native herbaceous plants was distributed throughout all disturbed surfaces within the conservation easement (Table 9). After the initial planting, 4 vegetation monitoring plots (VP) were established throughout the easement. VP 1 was established along the ephemeral pool margin, VP 2 was established in the floodplain, and VP 3 and 4 were established along the streambanks, with some overlap into the floodplain. Vegetation plots are 100m² in size with Plots 1, 3, and 4 being 5m x 20m and Plot 2 being 10m x 10m in size and shape. The three planting zones and the plant species and quantities are listed in Table 8.

Invasive species such as Chinese privet (*Ligustrum sinense*), Japanese honeysuckle (*Lonicera japonica*), multiflora rose (*Rosa multiflora*), Russian olive (*Elaeagnus angustifolia*), English ivey (*Hedera helix*), and tall fescue (*Lolium arundincaceum*) were treated a glyphosate solution. ----.

1.4 Project History, Contacts, and Attribute Data

The restoration project was completed in July 2008. Two significant rainfall events occurred shortly after construction. A 4.25" inch rainfall event occurred on August 27, 2008 followed by Tropical Storm Hanna, which produced 4.8" in of rain in 8 hours on September 6, 2008; 60% of the precipitation from this even occurred in a 4 hour time period. These events caused some riffles along the stream length to fail. The site was repaired in March 2009. The repaired disturbed area was re-seeded and the containerized plants were installed for the entire project upon completion of the repairs in March 2009. Table 2 summarizes the project activity.

2.0 Success Criteria

2.1 Morphologic Parameters and Channel Stability

2.1.1 Dimension

The dimension parameters of the restored channel should remain stable throughout the monitoring period. Cross sectional overlays should show modest changes from year to year. The channel should not show a trend towards widening or increases in cross-sectional area. Riffle depths should maintain a low bank height ratio (<1.2).

2.1.2 Pattern and Profile

Annual overlays of the longitudinal profile should not indicate significant aggradation of degradation over any substantial continuous lengths of channel. The bedform should develop or be maintained during the monitoring period and be consistent with the reference and design reaches. Variation within bedform parameters is acceptable as long as they are within design distributions. Pattern parameters should show little change over the monitoring period.

2.1.3 Substrate

The substrate should maintain or progress towards the design distribution. Particle size distribution within riffles should coarsen throughout the monitoring period.

2.1.4 Sediment Transport

The success of the parameters described above should be demonstrated by the lack on any significant aggradation or deposition within the channel. Point bar and inner berms should not encroach excessively into the channel. Mid-channel bars should not be present.

2.2 Vegetation

Vegetation monitoring plots set at 100 square meters in size will focus on planted stems only. The success criteria for the preferred species in the restoration areas will be based on annual and cumulative survival and growth over five (5) years. Survival of preferred species must be at a minimum 320 stems/acre at the end of the three years of monitoring and 260 stems/acre after five years. According to initial stem counts within the vegetation monitoring plots 1-4, there are 1277 planted stems/acre (Table7).

2.3 Hydrology

2.3.1 Streams

Two bankfull storm events must be recorded during the standard 5-year monitoring period. For the monitoring to be completed, these events must occur in separate monitoring years.

3.0 Monitoring Plan Guidelines

Monitoring protocol will follow that outlined within the EEP Site Specific Mitigation Plan and detailed in the U.S. Army Corps of Engineers (USACE) Stream Mitigation Guidelines for Monitoring Level I. Monitoring shall occur annually for a minimum of five years and consist of the collection and analysis of stream stability and riparian/stream bank vegetation survivability data to support the evaluation of the project in meeting established restoration objectives. Monitoring shall include measurements of stream dimension, profile, pattern, bed materials, photo documentation, vegetation survivability sampling, and stream bankfull return interval.

3.1 Hydrology

3.1.1 Stream

A crest gage shall be installed on the site to document bankfull events. The gauge shall be checked, documented, and reset during each site visit by the monitoring performer.

3.2 Stream Channel Stability and Geomorphology

This project consisted of a restoration reach and an enhancement reach. Five permanent cross sections were established on the site as detailed below:

- Reach 1 (Restoration): Station 0+00 9+94
 - Cross Section 1: Station 3+27 Riffle
 - Cross Section 2: Station 5+40 Riffle
 - Cross Section 3: Station 6+28 Pool
 - Cross Section 4: Station 9+19 Riffle
- Reach 2 (Enhancement): Station 9+94 13+50
 - Cross Section 5: Station 11+23 Riffle

3.2.1 Dimension

The permanent cross-sections shall be surveyed annually during the monitoring period. These sections should be overlaid to allow for comparison. Dimension parameters shall be calculated from the surveyed cross sections and compared to previous monitoring periods. The dimension data is summarized in Table 5 and detailed by section in Table 6.

3.2.2 Profile and Pattern

The entire length of the restoration site was surveyed for this mitigation plan. The MY-00 profile data for each reach is summarized in Tables 5. For subsequent monitoring years, these reaches shall be surveyed and the profiles overlaid for comparison. Pattern data shall be extracted and compared during the monitoring period.

3.2.3 Visual Assessment

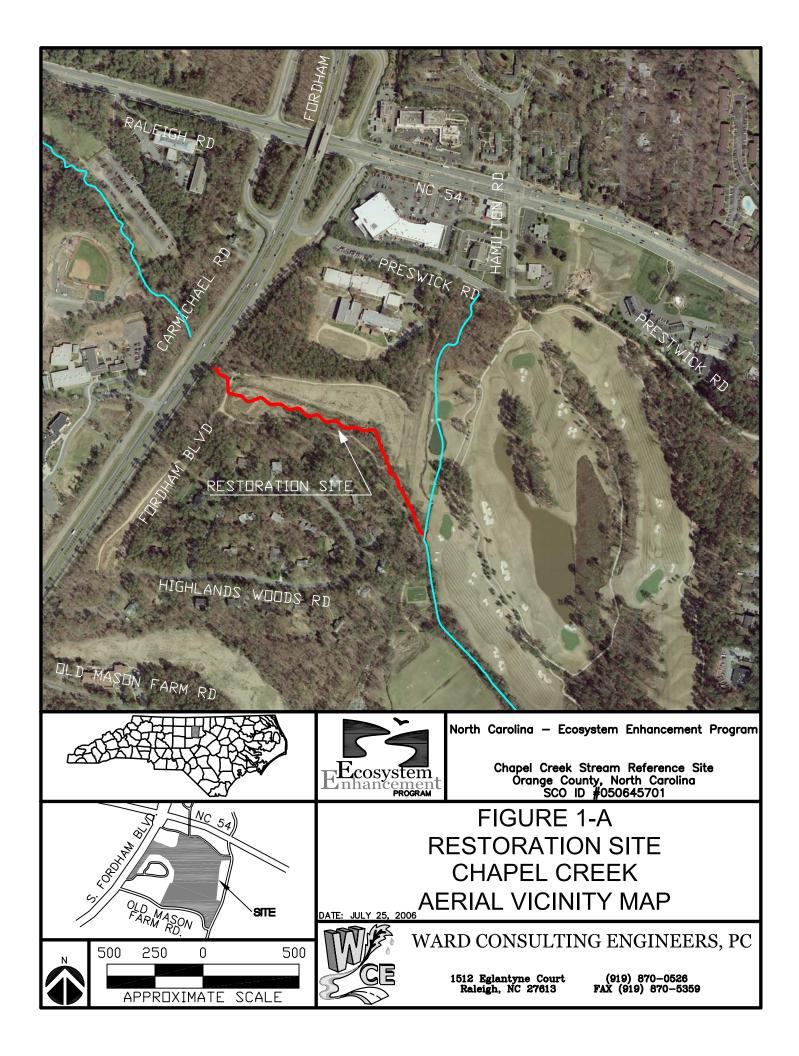
An annual visual assessment shall be conducted during each monitoring year per NCEEP morphometric monitoring guidelines

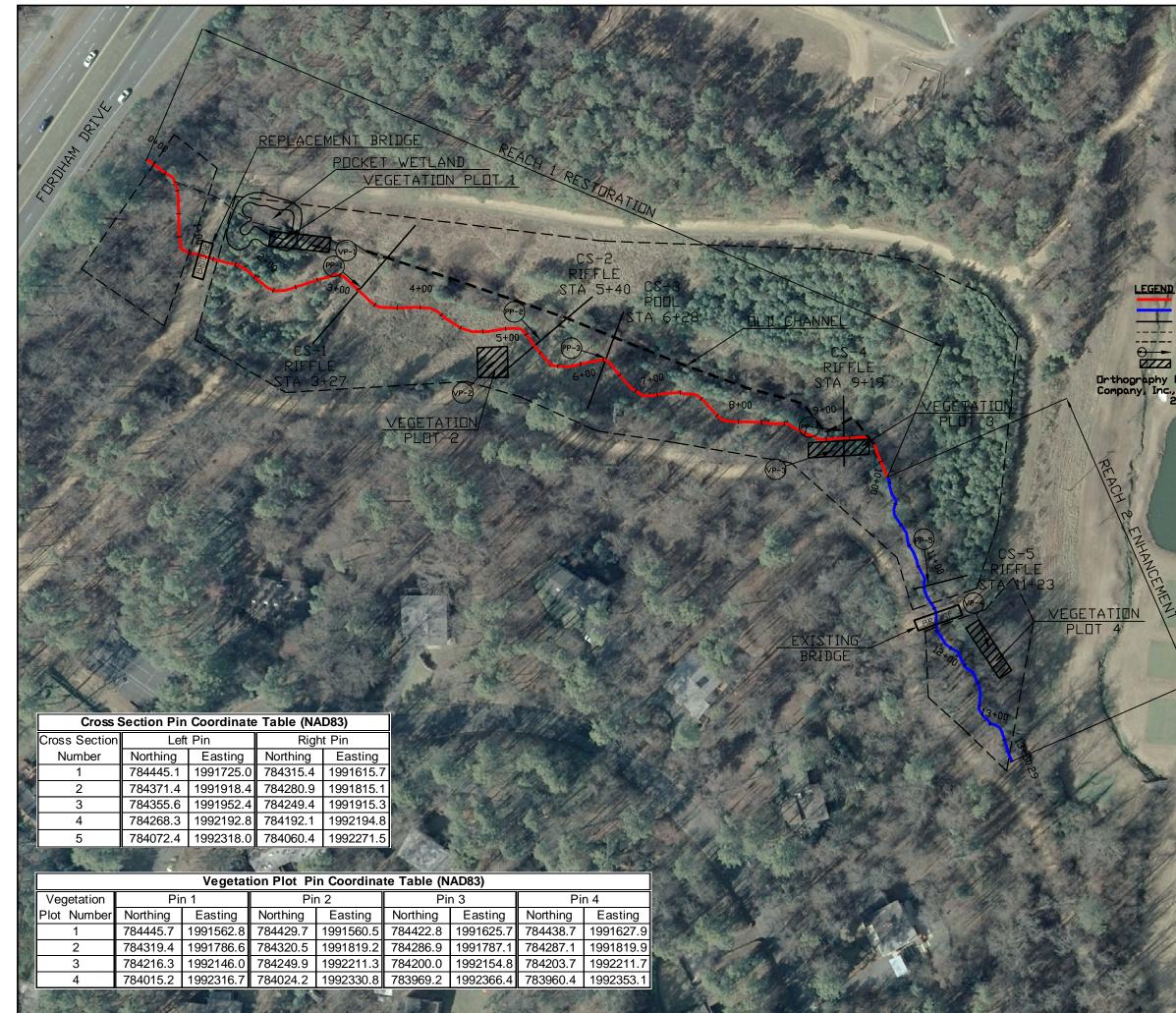
3.2.4 Bank Stability Assessment

Bank stability assessment (BEHI and NBS) shall be assessed during monitoring year 5.

3.2.5 Vegetation

Four vegetation monitoring plots were established and will focus on planted stems only. The success criteria for the preferred species in the restoration areas will be based on annual and cumulative survival and growth over five (5) years. Survival of preferred species must be at a minimum 320 stems/acre at the end of the three years of monitoring and 260 stems/acre after five years. According to initial stem counts within the vegetation monitoring plots 1-4, there are 1277 planted stems/acre (Table7).


3.2.6 Digital Photos


Photo points were established at the start/end of the project and at each cross section. For each subsequent monitoring period, photos shall be taken at the same location and, preferably, within the same two-month window between monitoring periods. The MY-00 photo log can be seen in Appendix D.

4.0 Maintenance and Contingency Plans

If deemed necessary, recommendations for increased monitoring, maintenance, or repair shall be made in the annual monitoring reports. Problem areas shall be located on the monitoring report plan view and tabulated noting the severity and possible causes.

Appendix A General Tables and Figures

RESTURATION REACH MANNEEMENT REACH CRUSS SECTION DL CHANNEL CUNSERVATION EASEMENT PHOTO POINT VEG PLOT Provided Byt The Sanborn Map 20090323, Drange County, NC	Ward Consulting Engineers, P.C. B386 Six Forks Rd, Suite 101 Raleigh, NC 27615 (919) B70-0526	ECEC-U/Q (E I E) XAI
	FIGURE 2 CHAPEL CREEK RESTORATION AND ENHANCEMENT CHAPEL HILL. NORTH CAROLINA	-
	DATE: 12 AUGUST 2009 REVISIONS: PROJECT NAME: CHAPEL CREEK DWG NAME: Mitigation Plan SCALE:	
GRAPHIC SCALE 100 0 50 100 200 400 (IN FEET) 1 inch = 100 ft.	SHEET NO.	

Project:	Chapel			-	Components North Carolina,	SCO# 0	50645701
Project Component or Reach ID	Pre-Existing Footage	Restoration Level	Approach	Restored Footage	Stationing	Buffer Acres	Comment
Reach I	957	R	P1	961	0+00 – 9+94	1.2	Includes 900 lf of channel relocation
Reach II	356	EII	P3	330	9+94 – 13+50	-	

Project: Cha			omponent S County, No			¢ 050645	701
Restoration Level	Stream (lf)		parian and (Ac)	Non- Riparian Wetland (Ac)	Upland (Ac)	Buffer (Ac)	BMP
		Riverine	Non- Riverine				
Restoration	961	-	-	-	-		
Enhancement		-	-	-	-		
Enhancement I	-						
Enhancement II	330						
Creation		-	-	-	-		
Preservation	-	-	-	-	-		
HQ Preservation	-	-	-	-	-		
		0	0				
Totals	1291		0	0	0	1.2	0

Table 2. Project Activity and Rep	• •	
Project: Chapel Creek, Orange County, North	Carolina, SCO#	050645701
	Data Collection	Completion or
Activity or Deliverable	Complete	Delivery
Restoration Plan		Aug-06
Final Design – Construction Plans		Jun-07
Construction		Jul-08
Temporary S&E mix applied to entire project area		Jul-08
Permanent seed mix applied to enitre project area		Jul-08
Repairs to stream due to damages from storm events		Mar-09
Temporary S&E mix applied to area disturbed by repairs		Mar-09
Permanent seed mix applied to area disturbed by repairs		Mar-09
Containerized and B&B plantings for entire reach		Mar-09
Mitigation Plan / As-built (Year 0 Monitoring – baseline)	Mar-09	Aug-09
Year 1 Monitoring		
Year 2 Monitoring		
Year 3 Monitoring		
Year 4 Monitoring		
Year 5 Monitoring		
Year 5+ Monitoring		

	ble 3. Project Contacts Table
	Orange County, North Carolina, SCO# 050645701
Designer	Ward Consulting Engineers, P.C.
	8386 Six Forks Road Suite 101
	Raleigh, NC 27615-5088
Primary project design POC	Becky Ward 919-870-0526
Construction Contractor	River Works, Inc.
	800 Regency Parkway, Suite 200
	Cary, NC 27518
Construction contractor POC	Will Pederson 919-459-9001
Survey Contractor	Level Cross Surveying, PLLC (all surveying)
	668 Marsh County Lane
	Randleman, NC 27317
Survey contractor POC	Sherie Willard 336-495-1713
Planting Contractor	River Works, Inc.
	800 Regency Parkway, Suite 200
	Cary, NC 27518
Planting contractor POC	Will Pederson 919-459-9001
Seeding Contractor	River Works, Inc.
	800 Regency Parkway, Suite 200
	Cary, NC 27518
Contractor point of contact	Will Pederson 919-459-9001
Seed Mix Sources	Green Resource 336-855-6363
Nursery Stock Suppliers	Mellow Marsh Farm, Inc. 919-742-1200
	Cure Nursery 919-542-6186
Monitoring Performers	Ward Consulting Engineers, P.C.
	8386 Six Forks Road Suite 101
	Raleigh, NC 27615-5088
Stream Monitoring POC	Robert Langager 919-870-0526
Vegetation Monitoring POC	Chris Sheats - The Catena Group - 919-732-1300
Wetland Monitoring POC	Chris Sheats - The Catena Group - 919-732-1300

Table 4. Project A Project: Chapel Creek, Orange County		CO# 050645701						
Project County	Orai							
Physiographic Region	Piedmont (Tr							
Ecoregion	Central P	/						
Project River Basin	Cape	Fear						
USGS HUC for Project (14 digit)	03030002							
NCDWQ Sub-basin for Project	03-00	6-06						
Within extent of EEP Watershed Plan?	Morgan Creel	k Little Creek						
WRC Hab Class (Warm, Cool, Cold)	Wa							
% of project easement fenced or demarcated	100)%						
Beaver activity observed during design phase?	N	0						
Postoration Company	nt Attributo Tablo							
Restoration Compone	Reach 1	Reach 2						
Drainage area	0.42 squa							
Stream order	0.+2 3940 2							
Restored length (feet)	961	330						
Perennial or Intermittent	Perei							
Watershed type (Rural, Urban, Developing etc.)	Urb							
Watershed LULC Distribution (e.g.)	010							
Residential	0.3	32						
Parking lots, roads, roofs, paved	0.0							
Open space with grass cover > 75%	0.0							
Forested	0.0							
Etc.	0.0							
Watershed impervious cover (%)		·						
NCDWQ AU/Index number								
NCDWQ classification	WS-IV							
303d listed?	N	,						
Upstream of a 303d listed segment?	Ye							
Reasons for 303d listing or stressor	Standard							
Total acreage of easement	5.15 a							
Total vegetated acreage within the easement	4.99 a							
Total planted acreage as part of the restoration	3.34 a							
Rosgen classification of pre-existing	G							
Rosgen classification of As-built	C4	G4						
Valley type	VI							
Valley slope	0.0136	0.017						
Valley side slope range (e.g. 2-3.%)	-							
Valley toe slope range (e.g. 2-3.%)								
Cowardin classification	Rive	rine						
Trout waters designation	N							
Species of concern, endangered etc.? (Y/N)	N							
Dominant soil series and characteristics		-						
Series	Chew	vacla						
Depth	-							
Clay%								
K	-							
T								

Appendix B Morhpological Summary Data and Plots

				_							Stream														
Parameter	Gauge ²	Dee	vienel C		oject:					county	, North					701		Decian			•	- h:lá			
	Gauge	Reg	gional C	urve		Pre-	EXISTIN	g Cond	ition			Refer	ence R	each(es) Data			Design			A	s-duilt /	Baseli	ne	
Dimension and Substrate - Riffle		LL	UL	Eq.	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Med	Max	Min	Mean	Med	Max	SD	n
Bankfull Width (ft) -	-	-	-	9.5	12.7	-	16.3	-	-	16.2	16.7	-	21.1	-	-	-	17.5	-	19.9	20.7	20.5	21.6	0.89	3
Floodprone Width (ft))				18	24.7	-	35	-	-	58	97	-	120	-	•	61	102	126	61	184	224	266	108	3
Bankfull Mean Depth (ft) -	-	-	-	1.4	1.7	-	1.9	-	-	1.3	1.6	-	1.7	-	-	-	1.59	-	0.87	1.2	1.1	1.5	0.34	3
¹ Bankfull Max Depth (ft) -				2.8	3.2	-	3.8	-	-	2.2	2.3	-	2.5	-	•	2.3	2.4	2.5	1.8	2.2	2.3	2.4	0.34	3
Bankfull Cross Sectional Area (ft ²) -	-	-	-	17.5	21.6	-	29.2	-	-	27.2	27.5	-	27.8	-	-	-	27.8	-	18.9	24.1	22.7	30.6	6	3
Width/Depth Ratio	- (5	4.6	-	9.1	-	-	9.6	10.2	-	16	-	-	-	11	-	12.9	18.7	18.5	24.8	0.89	3
Entrenchment Ratio	- 0				1.5	2.1	-	3.2	-	-	3.5	5.8	-	7.2	-	-	3.5	5.8	7.2	2.8	9	11.3	13	5.5	3
¹ Bank Height Ratio	- c				1.7	3.3	-	4.4	-	-	1.5	1.6	-	1.7	-	-	-	1	-	1	1	1	1	0	3
Profile																									
Riffle Length (ft)				3.5	6.8	-	13	-	-	7	21.2	-	42	-	-	7	21.2	42	13.7	23.1	22.91	36.6	6.2	17
Riffle Slope (ft/ft)				0	0.01	-	0.05	-	-	0	0.03	-	0.1	-	-	0	0.03	0.1	0	0.02	0.02	0.05	0.01	17
Pool Length (ft)				6	6.5	-	7	-	-	6.4	13.2	-	19.4	-	-	6.5	13.2	19.4	26.8	34.2	34.3	40.8	4.7	16
Pool Max depth (ft)				2.1	2.7	-	3.5	-	-	2.5	3	-	4.2	-	-	2.5	3	4.2	2.5	3.8	4	4.7	0.7	16
Pool Spacing (ft)				16	42	-	91	-	-	41	56	-	78	-	-	40	55	75	40	56	54	71	9.1	15
Pattern																									
Channel Beltwidth (ft)				15	17.7	-	20	-	-	28.7	22	-	40	-	-	21.2	27.6	38.5	31.9	43.8	40.9	75.9	10.9	14
Radius of Curvature (ft)				14.6	23.4	-	30.1	-	-	10.6	20	-	38.2	-	-	10.2	19.3	36.8	23.7	44.6	42.9	66.7	12.1	13
Rc:Bankfull width (ft/ft)				1.2	1.9	-	2.4	-	-	0.58	1.1	-	2.1	-	-	0.58	1.1	2.1	1.1	2.2	2.1	66.7	0.59	13
Meander Wavelength (ft))				55	58.3	-	65	-	-	113	125	-	140	-	-	109	120	135	90	104	104	121	9.1	13
Meander Width Ratio					1.2	1.43	-	1.62	-	-	1.2	1.6	-	2.2	-	-	1.2	1.6	2.2	1.6	2.2	2.1	2.8	0.55	14
Transport parameters																									
Reach Shear Stress (competency) lb/f	2							-										-					-		
Max part size (mm) mobilized at bankful								-										-					-		
Stream Power (transport capacity) W/m	2							-										-					-		
Additional Reach Parameters																									
Rosgen Classification	ı -						Ģ	64					C4	/E4				C4				C	24		
Bankfull Velocity (fps) -	-	-	-			6.	.83										5.8				6.	92		
Bankfull Discharge (cfs) –	-	-	-			1	60																	
Valley length (ft)							70					3	50											
Channel Thalweg length (ft)						9	57					4	00				994				9	94		
Sinuosity (ft)						1.	.06					1	14				1.14				1.	14		
Water Surface Slope (Channel) (ft/ft)) –							-						-				-				0.0	105		
BF slope (ft/ft) -						0.0	128					0.	011				0.012					111		
³ Bankfull Floodplain Area (acres)								-							-		-							
⁴ Proportion over wide (%					· · · · ·				-																
Channel Stability or Habitat Metric								-						-											
Biological or Othe	r							-						-											

Exhibit Table 5b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Project: Chapel Creek, Orange County, North Carolina, SCO# 050645701

Parameter		Pre	e-Exis	ting C	Conditi	on			Refe	erence	Reac	h(es)	Data				Ι	Desig	n					As-bı	ıilt/Ba	seline	•
¹ Ri% / Ru% / P% / G% / S%	-	-	-	-	-			-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	
¹ SC% / Sa% / G% / C% / B% / Be%	-	-	-	-	-	-		-	-	-	-	-	-														
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)	1.6	7.2	11.7	22	30.3	-	-	0.39	1.3	11.4	69.8	164.9	-	-													
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10	-	-	-	-	-			-	-	-	-	-										-	-	-	-	-	
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0	-	-	-	-				-	-	-	-											-	-	-	-		
BEHI VL% / L% / M% / H% / VH% / E%	-	-	-	-	-	-		-	-	-	-	-	-														

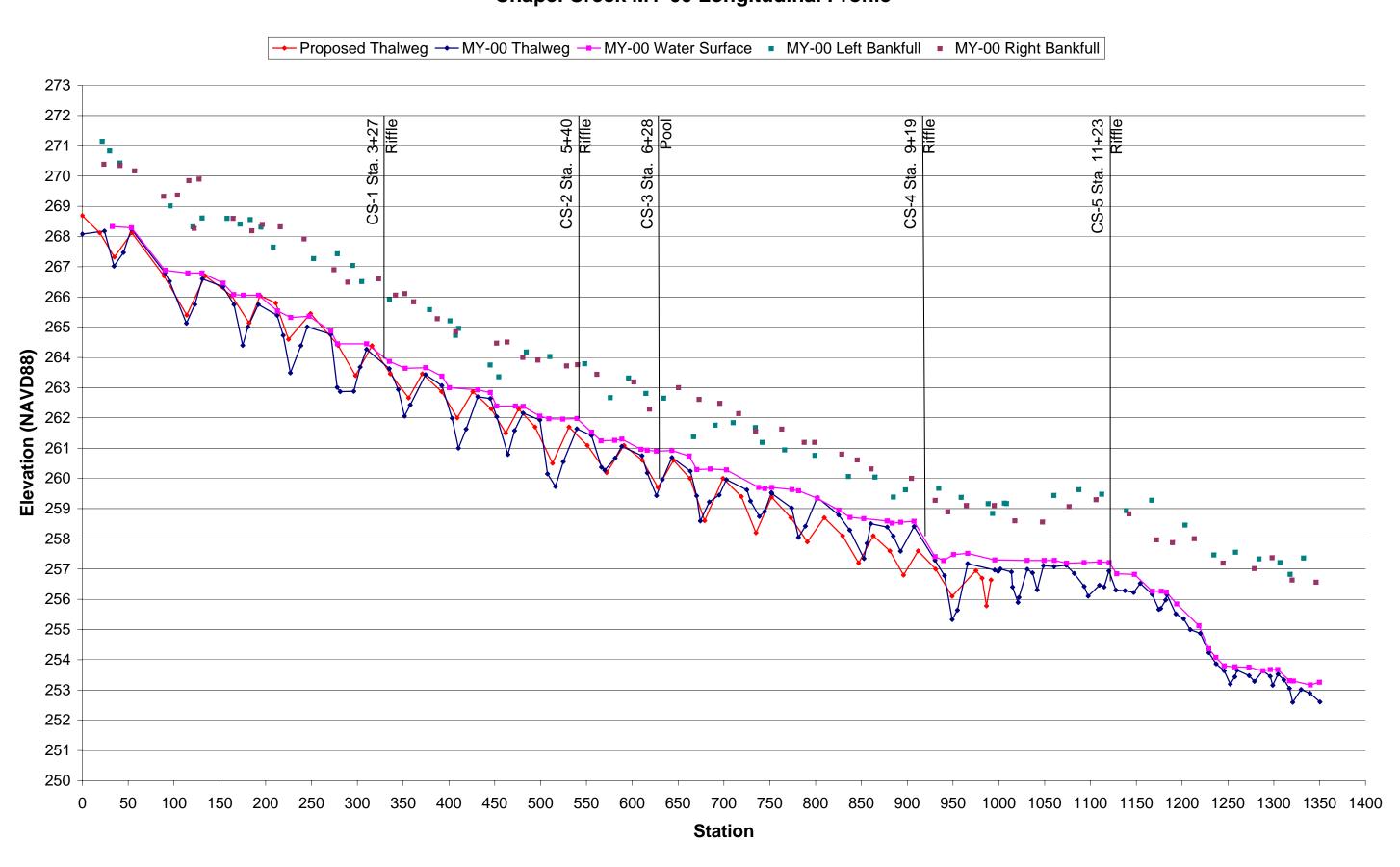
Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

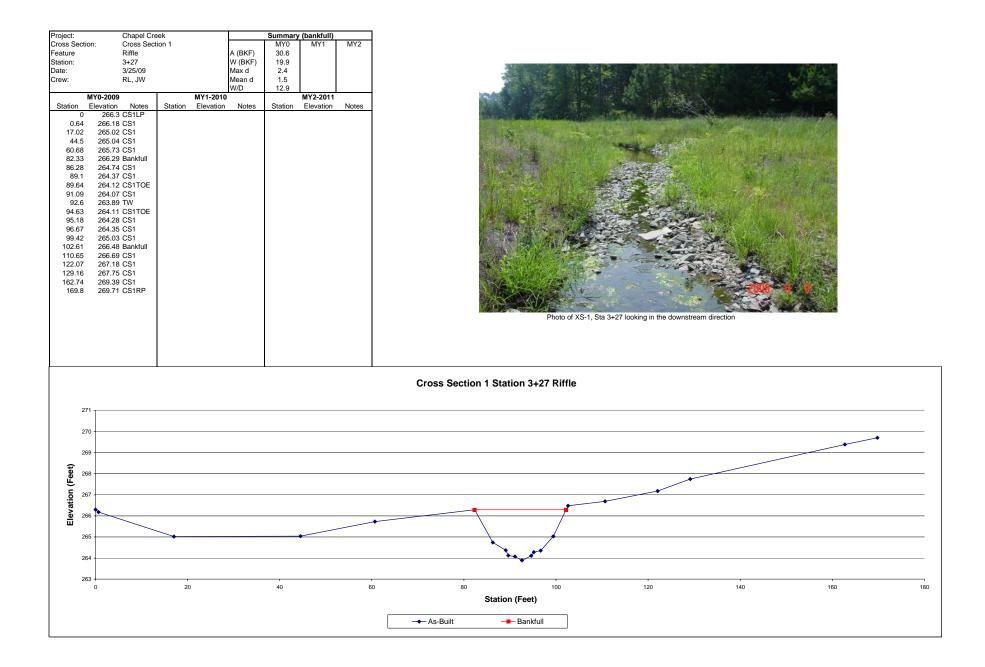
2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

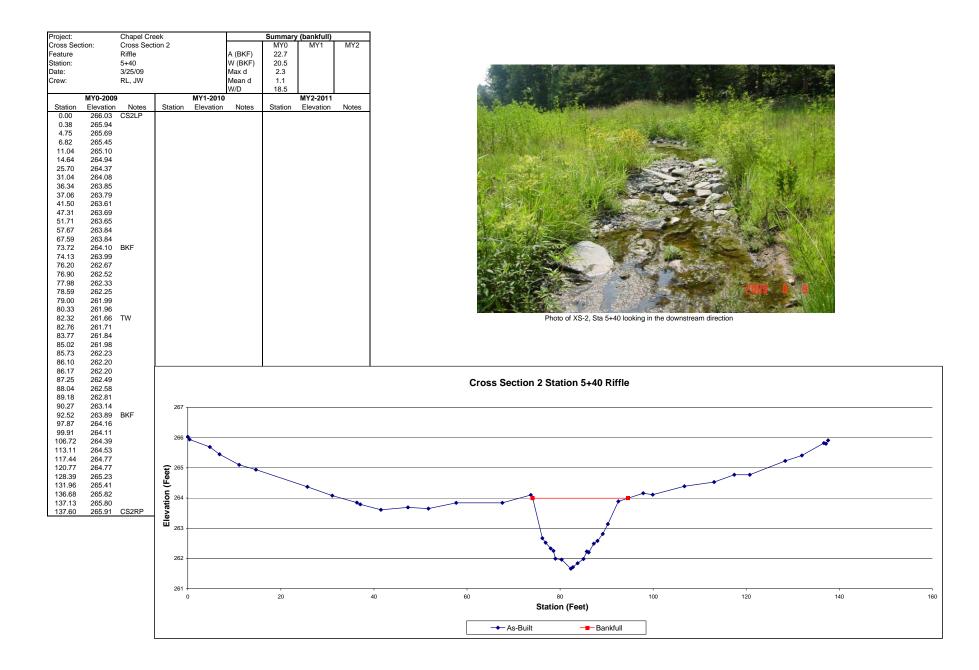
3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

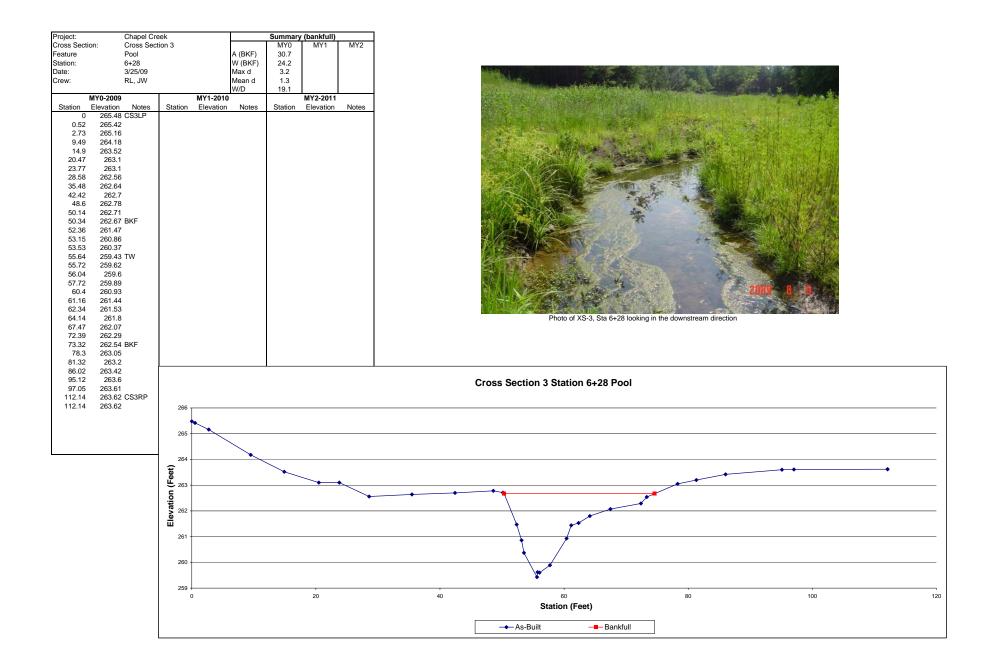
Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary. The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

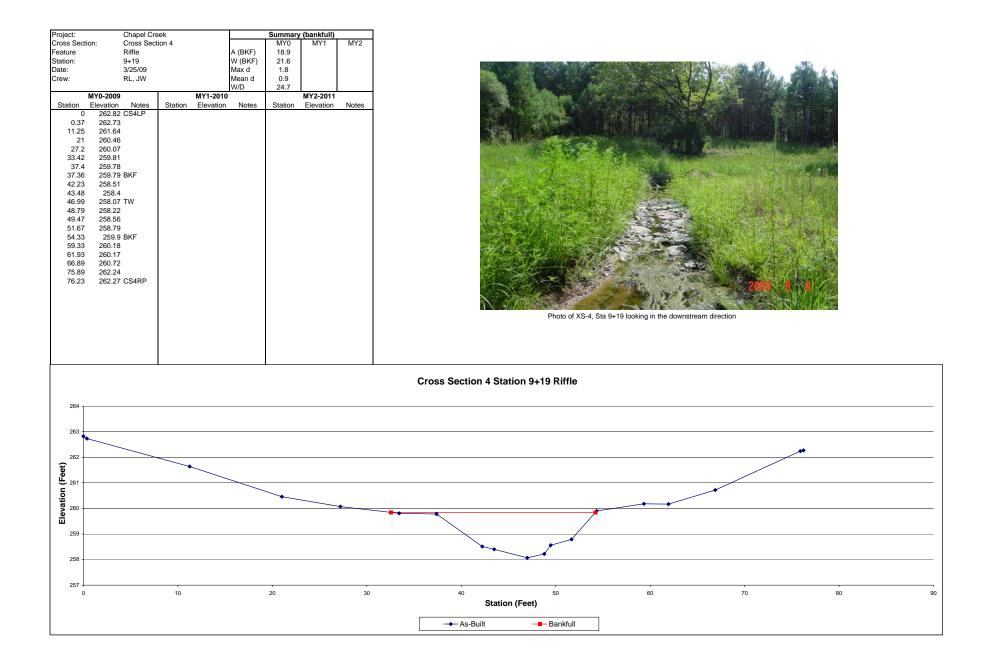

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design survey), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-constrution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the reach. This means that the distributions for these parameters should include data from both the cross-section surveys and the longitudinal profile permits sampling of the BHR at riffles beyond those subject to cross-sections and therefore can be readily integrated and provide a more complete sample distribution for these parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons.

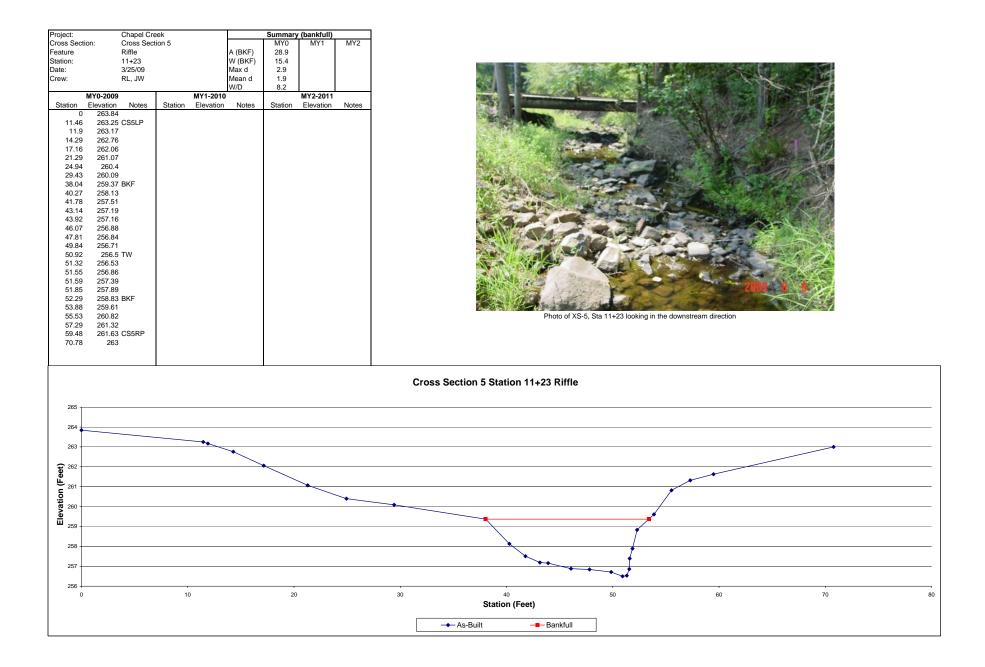
								Proj							.,																				
		c	cross	Sectior	1 (Riff	ile)			0	Cross S	ection	2 (Riff	le)			C	Cross S	ection	3 (Poo	ol)			Cr	oss Se	ection 4	4 (Riffl	e)		Cross Section 5 (Riffle)						
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	2 MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Bankfull Width (ft)	19.9							21.5							24.2							21.6							15.4						
Floodprone Width (ft)	224							266							164							61							48						
Bankfull Mean Depth (ft)	1.54							1.11							1.27							0.87							1.88						
Bankfull Max Depth (ft)	2.4							2.34							3.24							1.78							2.87						1
Bankfull Cross Sectional Area (ft ²)	30.6							22.7							30.7							18.9							28.9						
Bankfull Width/Depth Ratio	12.9							18.5							19.1							24.7							8.16						1
Bankfull Entrenchment Ratio	11.3							13							6.76							2.81							3.13						
Bankfull Bank Height Ratio	1							1							0.96							0.97							1						
Based on current/developing bankfull feature ²	1		-		-	-	-	1	1	1	r	1	-	1 1					1		1							r							
Bankfull Width (ft)				_																															
Floodprone Width (ft)				_																															
Bankfull Mean Depth (ft)																																			
Bankfull Max Depth (ft)																																			
Bankfull Cross Sectional Area (ft ²)																																			
Bankfull Width/Depth Ratio																																			
Bankfull Entrenchment Ratio																																			
Bankfull Bank Height Ratio																																			
Cross Sectional Area between end pins (ft ²)																																			


Exhibit Table 6. Dimensional Morphology Summary (Dimensional Parameters – Cross Sections)


1 = Widths and depths for each resurvey will be based on the baseline bankfull datum regardless of dimensional/depositional development. 2 = Based on the elevation of any dominant depositional feature that develops and is observed at the time of survey. If the baseline bankfull datum remains the only significant depositional feature that the time of survey will be equal, however, if another depositional feature of significance develops above or below the baseline bankfull datum then this should be tracked and quantified in these cells.


Г




Chapel Creek MY-00 Longitudinal Profile

Appendix C Vegetation Data

Table 7. Vege	tation Plot Attribut	e Da	ata			
Project: Chapel Creek, Orange	County, North Ca	rolir	ia, S	600	# 05	50645701
Scientific Name	Common Name		Ple	ot*		Total
Sectime Painte	Common Name	1	2	3	4	Total
Magnolia virginiana	Sweetbay Magnolia	3				3
Rosa palustris	Swamp Rose	5				5
Rhododendron viscosum	Swamp Azalea	4				4
Viburnum cassinoides	Northern Wild Raisin	3				3
Hibiscus moscheutos	Eastern Rose Mallow	5				5
Vaccinium corymbosum	Highbush Blueberry	2				2
Diospyros virginiana	American Persimmon	1	3	2		6
Lindera benzoin	Spicebush	1	1	8	3	13
Quercus nigra	Water Oak		1		4	5
Carpinus caroliniana	Ironwood		2		3	5
Betula nigra	River Birch		2	4	5	11
Fraxinus pennsylvanica	Green Ash		4	2	5	11
Platanus occidentalis	Sycamore		3			3
Calycanthus floridus	Sweet-shrub		1	1	3	5
Hamamelis virgniniana	Witch-hazel		1			1
Viburnum dentatum	Mapleleaf Viburnum	1	2			3
Viburnum nudum	Possumhaw			17		17
Cornus amomum	Silky Dogwood			5		5
Xanthorhiza simplicissima	Brook-feather			3		3
Cephalanthus occidentalis	Buttonbush			5		5
Total		25	20	47	23	115

* Plot 1,3, &4 are 5x10 meter; Plot 2 is 10x10 meters

Table 8. Plant Species and Quantities for Zones 1, 2, and 3

Zone 1: Weth	and Depression (0.14 ac)		-
#	Latin Name	Common Name	Туре
4	Cephalanthus occidentalis	button bush	Small Tree bands
11	Hibiscus moscheutus	swamp marshmallow	Plugs
7	Rosa palustris	swamp rose	Tublings
11	Viburnum cassinoides	southern wild raisin	1 Gallon
7	Xanthorhiza simplicissima	yellow root	Small Tree bands
4	Alnus serrulata	tag alder	Small Tree bands
4	Cornus ammomum	silky dogwood	Seedling
11	Rhododendron viscosum	swamp azalea	1 Gallon
7	Itea virginica	Virginia willow	bare root
7	Magnolia virginiana	sweetbay magnolia	1 gallon
73	Total		
Zone 2: Ripa	rian Buffer (3.2 ac)		
#	Latin Name	Common Name	Туре
240	Quercus nigra	willow oak	Seedling
240	Platanus occidentalis	sycamore	Seedling
240	Fraxinus pennsylvanica	green ash	Seedling
240	Carpinus caroliniana	ironwood	Seedling
160	Lindera benzoin	spice bush	Seedling
320	Viburnum dentatum	arrowwood	Seedling

160	Calycanthus floridus	sweet shrub	Seedling
160	Viburnum dentatum	Arrowood	Bare root
160	Diospyros virginiana	American persimmon	Bare root
100	Betula nigra	River birch	Bare root
216	Vaccinium corymbosum	highbush blueberry	Tubling
144	Hamamelis virginia	witch hazel	Tubling
2220	Total		
Zone 3: Stream	mbanks (2600 lf)		
#	Latin Name	Common Name	Туре
216	Vibernum dentatum	arrowood	Bare root
144	Alnus serrulata	tag alder	Small Tree bands
288	Cephalanthus occidentalis	buttonbush	Tubling
144	Sambucus canadensis	elderberry	Tubling
144	Cornus ammomum	silky dogwood	Tubling
144	Xanthorhiza simplicissima	yellowroot	Tubling
50	Cornus amomum	silky dogwood	Seedling
50	Salix sericea	Silky willow	Seedling
1180	Total		

Table 9. Perennial Seed Mix

Scientific Name	Common Name	Percent
Elymus hystrix	Bottlebrush grass	15
Panicum anceps	Beaked panic grass	15
Agrostis alba	Redtop	10
Bidens frondosa	Devil's beggartick	10
Coreopsis lanceolata	Lanceleaf tickseed	10

Appendix D Site Photo Log

Site Photo Log

PP-1: Looking downstream at cross section #1, station 3+27.

PP-2: Looking downstream at cross section #2, station 5+40.

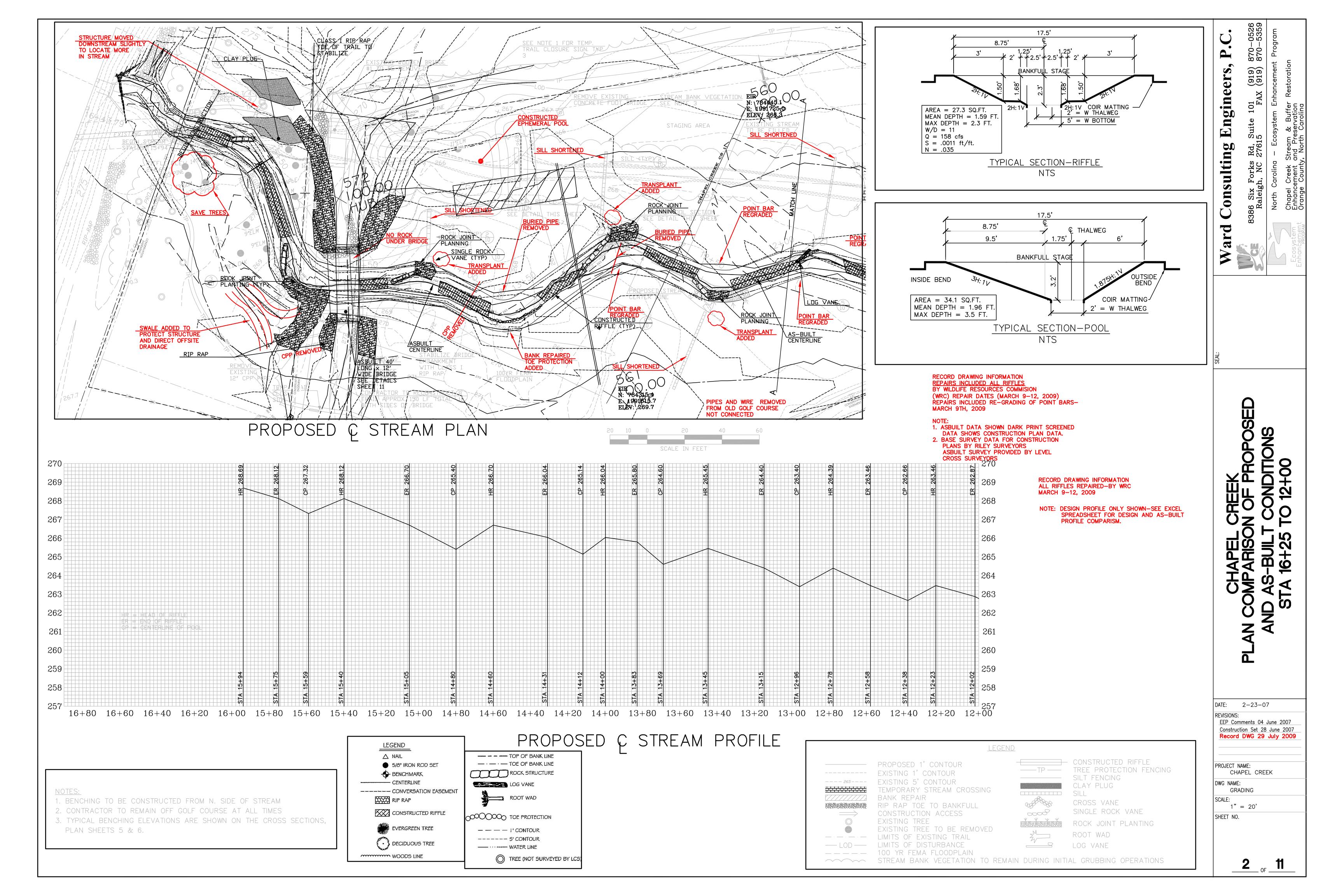
PP-3: Looking downstream at cross section #3, station 6+28.

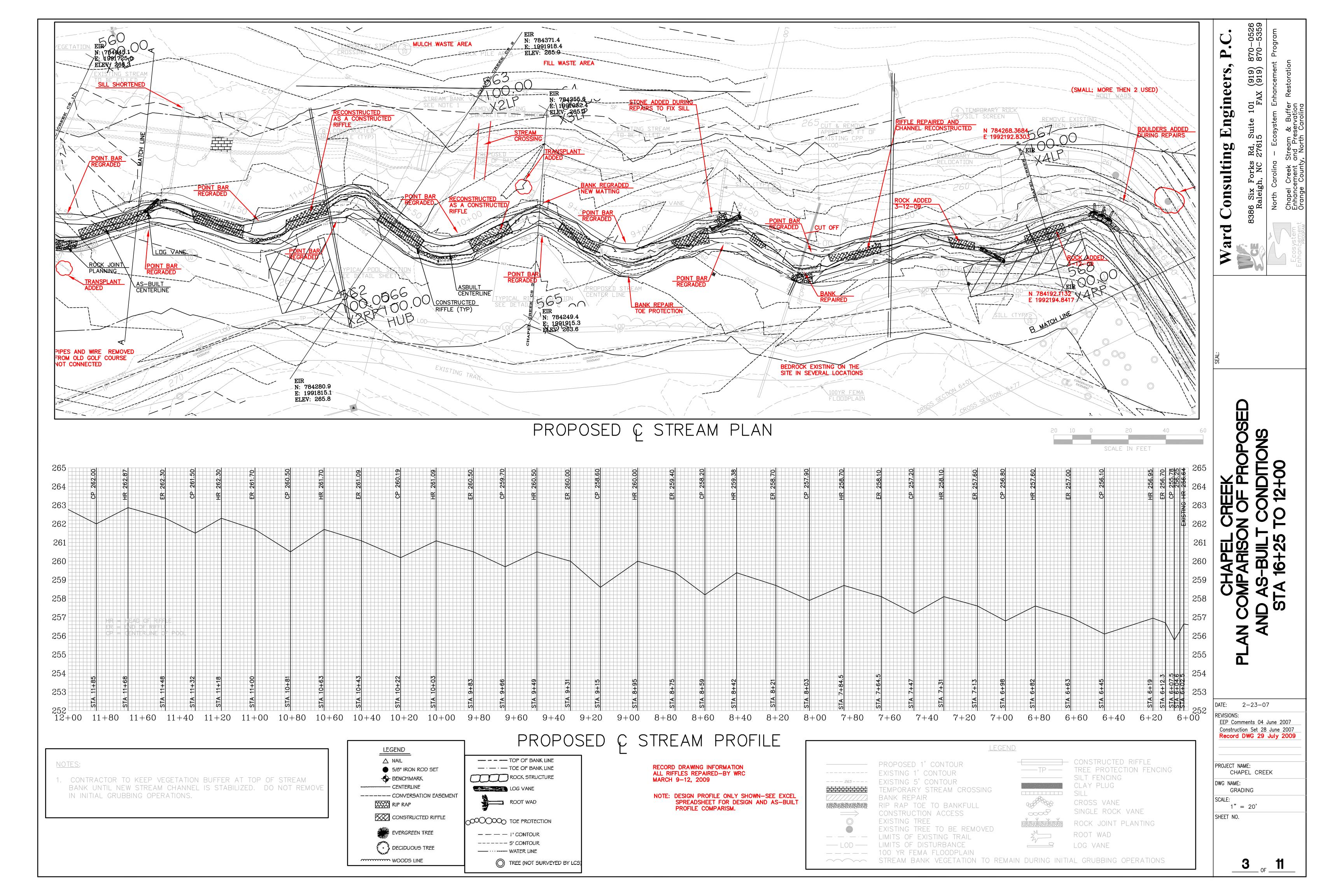
PP-4: Looking downstream at cross section #4, station 9+19.

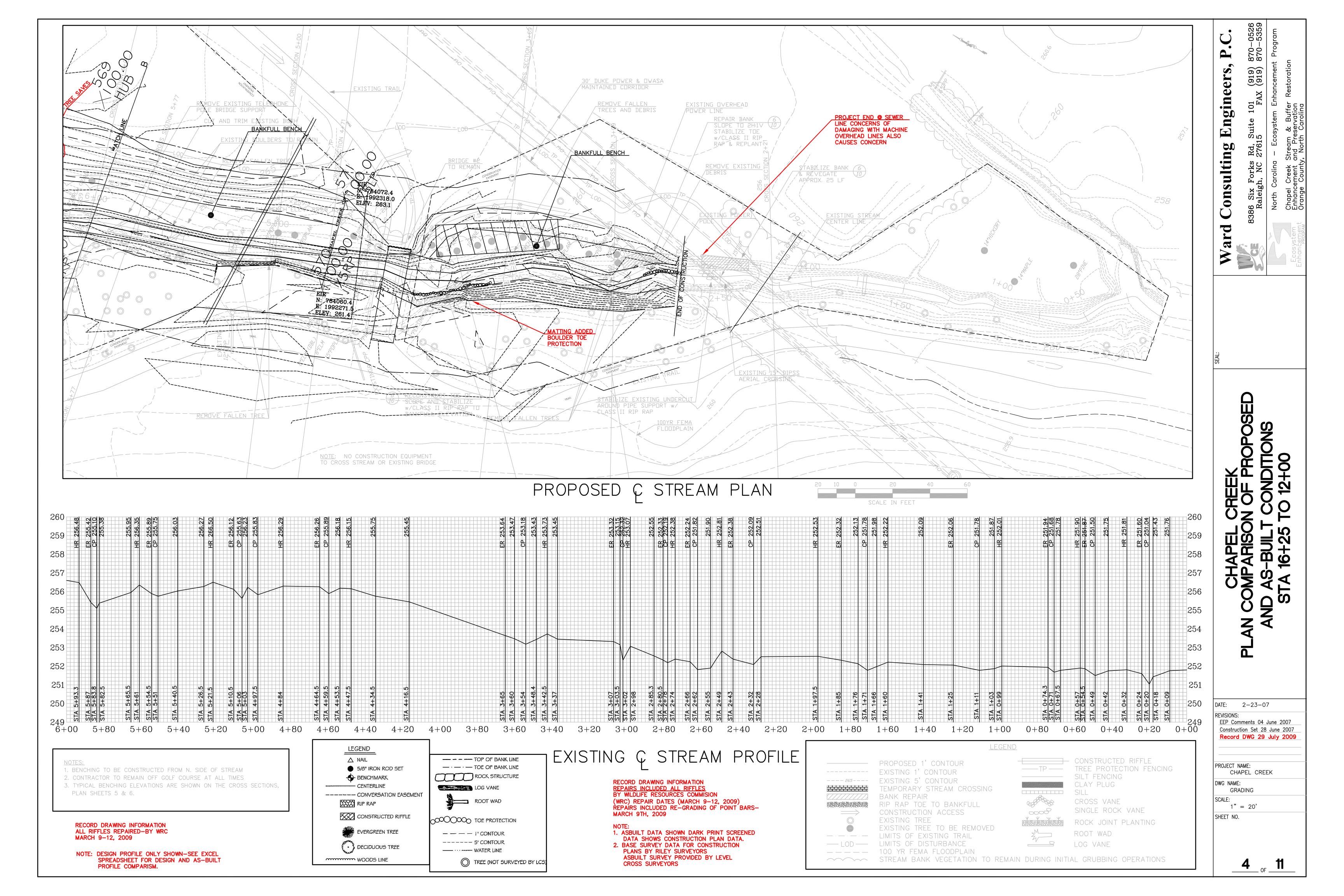
PP-5: Looking downstream at cross section #5, station 11+23.

VP-1: Vegetation Plot 1.

VP-2: Vegetation Plot 2.




VP-3: Vegetation Plot 3.



VP-4: Vegetation Plot 4.

Appendix E As-Built Plan Sheets

